Design Patterns
The Timeless Way of Coding

Designed and Presented by
Dr. Heinz Kabutz

lllustrations by Edith Sher

Copyright © 2001 Maxkab Solutions CC — All Rights Reserved

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Dr. Heinz Kabutz

Professional Java Programmer

Received PhD in Computer Science from the
University of Cape Town, South Africa

Trainer of Java and Design Patterns Courses in
various places of the world

Publish advanced Java newsletter “Made in
Africa” that is reaching 99 countries

— This raises Africa’s technological image
This is my 3rd visit to Mauritius!

Structure of Talk

« Software Engineering
— as it happens in the software factories

« How Design Patterns fit in
* Two examples of Design Patterns

 Discussion time

1. Software Engineering

« Why do companies want experience?
* What experience is most valuable?

* Experience in which language will guarantee
you a job?

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

U1

Classic Methodologies

* e.g. Waterfall Model: Analysis, Design,
Implementation, Testing

« Suffered from “Analysis Paralysis”
» Bad decision during analysis very expensive

* Nice model for large teams with greatly varying
skill-sets

 Each iteration takes months

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Agile Methodologies

* e.g. eXtreme Programming
* All programming is done in pairs

— For constant code reviewing, NOT mentoring
Very short iterations (days or even hours)
Testing is done several times a day
» Daily automated build and complete test
* Designing with Patterns
* Ruthless refactoring

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Which Methodology to Use?

« Waterfall Model
— One or two excellent analysts
— Few good designers
— Lots of average programmers
— Suffers from “Peter Principle”

» eXtreme Programming

— Between 6 and 12 above average programmers per
team

— Fosters cooperation, not competition in team
— Low staff turnover
— Chaos if not strictly managed!!!

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

00

Typical Day as Programmer

08:00 Arrive at work
08:30 Had first cup of coffee, erased SPAM
09:00 Chatted with coworker about soccer
10:00 Had project status meeting
11:00 Thought about design problems

(Whilst playing minesweeper)
12:30 Looked at some critical bugs for important customer
13:30 Finished playing “Battlefield 1942 with colleagues
15:00 Wrote 200 lines of VB code, answered 5 phone calls
16:30 Company meeting entitled “Be more productive”

17:30 Wrote emails to bosses and colleagues (and
friends)

23:30 Time to go home — finished writing TCP/IP stack in
assembler

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

O

Programming is a Minority Task

* Most of your time is spent in:
— Meetings
— Documentation
— Planning
— Testing, bug fixing & support
— Email
» Even Dbrilliant programmers have to
communicate!

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

=
o

Design Language can Help

* Meetings
— Communicate more effectively about your designs to
colleagues

* Documentation
— Code documentation can refer to Design Pattern

* Planning
— You can talk in higher-level components

« Testing, bug fixing & support

— Better designs will reduce bugs and make code
easier to change

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Vintage Whiskey

* Design Patterns are like good whiskey
— You cannot appreciate them at first

— As you study them you learn the difference between
single-malt and normal whiskey

— As you become a connoisseur you experience the
various textures you didn'’t notice before
« Warning: Once you are hooked,
you will no longer be satisfied
with cheap stuff!

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Why are patterns so important?

 Provide a view into the brains
of OO experts

* Help you understand existing
designs

« Patterns in Java, Volume 1,
Mark Grand writes
— "What makes a bright, experienced programmer

much more productive than a bright, but
Inexperienced, programmer Iis experience."

AbstractClass

interface
Javahterface

+method(lint) void
+method{i:int) void

A

ConcreteClass
-address:String

+method(i:int):void

ComplexClass

*

AggregatedClass

CompositionedClass

AssociatedClass

UML Refresher — Dependencies

zzrreategss lCreatedCIassI

-

‘ClassUser I: =
~ . S<uses==>
.
A‘Useful(tlass I
Text note - usually

iy
awell-meaning comment

T

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

UML Refresher — Access

- public access represented by +

« private access represented by -

- protected access represented by #

- package access represented by no symbol
- static access shown as underlined

« abstract methods show in Italics

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Design Patterns Origin

The Timeless Way of Building
Christopher Alexander

There is a central quality which is the root
criterion of life and spirit in a man, a town, a
building, or a wilderness.

If you want to make a living
flower, you don’t build it
physically, with tweezers,

cell by cell. You grow it
from the seed.

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

=
O

« “Design Patterns” book by

Textbook — "Design Patterns”
Gang of Four (GoF)
« Contains a collection of

\Li8/2
©3
~ AN
N
basic “patterns” that

experienced OO developers use regularly

« Cannot proceed very far in Java, C#, VB.NET
without understanding patterns

 Facilitates better communication

« Based on work of renegade architect
Christopher Alexander in “The Timeless Way of
Building”

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

N
o

\What's in a hame?

The Timeless Way of Building

The search for a name is a fundamental part
of the process of inventing or discovering a
pattern.

So long as a pattern has a weak name, it
means that it is not a clear concept, and
you cannot tell me to make “one”.

Misuse of Design Patterns

« Patterns Misapplied
— "design” patterns should not be used during analysis

* Cookie Cutter Patterns
— patterns are generalised solutions

* Misuse By Omission
— reinventing a crooked wheel

Summary

* Obiject Orientation is here to stay

« Design Patterns will fast-track you in learning
how to design with objects

Singleton

e |ntent

— Ensure a class only
has one instance, and
provide a global point
of access to it.

SecurityModule

-passwords:Properties
-SecurityModule()

+getinstance():Securityhodule
+login{user: String, pwd: String):UserContext

-secureHash(pwd:String):String

+hewlser(ctcUserContext user:String, pwd: String):void
+UserContext

Sample Code: Singleton

public class SecurityModule ({
private static SecurityModule instance =
new SecurityModule() ;

public static SecurityModule getlInstance() ({
return instance;

}

private SecurityModule () {
loadPasswords () ;

}

public UserContext login(String username,
String password) {
return new UserContext (username, password) ;

}
// etc.

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Applicability: Singleton

* Use the Singleton pattern when

— there must be exactly one instance of a class, and it
must be accessible to clients from a well-known
access point.

— when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

Singleton

-instance:Singleton
-singletonData:HashMap

-Singleton()

+getinstance():Singleton
+singletonMethodA(: void
+singletonMethodB(:void

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Consequences: Singleton

» Benefits
— Controlled access to sole instance
— Reduced name space
— Permits refinement of operations and representation
— Permits a variable number of instances
— More flexible than class operations

 Drawbacks
— Overuse can make a system less OO.

Known Uses in Java: Singleton

- java.lang.Runtime.getRuntime()
 java.awt.Toolkit.getDefaultToolkit()

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Questions: Singleton

* The pattern for Singleton uses a private
constructor, thus preventing extendability. What
issues should you consider if you want to make
the Singleton “polymorphic™?

« Sometimes a Singleton needs to be set up with
certain data, such as filename, database URL,
etc. How would you do this, and what are the
iIssues involved?

Exercises: Singleton

* Turn the following class into a
Singleton:

public class Earth {
public static void spin() {}
public static void warmUp () {}

}

public class EarthTest {
public static void main(String[] args) {
Earth.spin() ;
Earth.warmUp () ;
}
}

 Now change it to be extendible

Page-by-Page lterator

e |ntent

— Efficiently access a large, remote list by retrieving its
elements one sublist of value objects at a time.

 Also known as
— Paged List, Value List Handler

CatalogDAQ

+getCateqories{startindex:int countint) . ListChunk

+getProductsicategon/ic:String, startindexcint count:int) . ListChunk
+getitemsiproductid:String, startindexcint countint): LIstChunk

ListChunk
totalCountint
collection:Collection
currentCountint
firstElementindexint

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Applicability: P-b-P Iterator

* Use a page-by-page iterator to access a large
list of server-side data when:

— the user will be interested in only a portion of the list
at any time.

— the entire list will not fit on the client display.
— the entire list will not fit in memory.

— transmitting the entire list at once would take too
much time.

PageByPagelterator

+setCursor(i:int):void
+setPageSize(n:int)void

+next(:ValueOhjectList
+hashNext():boolean
ClientObject +previous():ValueObjectList +getEntities(startint,n:int):.List

+hasPrevious():boolean +getEntities():List

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Consequences: P-b-P Iterator

» Benefits
— Alternative to EJB Finders for large queries
— Caches query result on server side
— Provides better querying flexibility

— Improves network performance
» |Less server-side data is transferred

— Can defer entity bean transactions

 Drawbacks

— More server requests are made
— The iterator is not robust

Known Uses: P-b-P lterator

« PetStore example:
— CatalogDAO returns a ListChunk object

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Questions: P-b-P lterator

 How many rows would you need in the result
set for this pattern to be useful? Why?

* What optimizations could you add to increase
the speed of data retrieval?

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Exercises: P-b-P lterator

* Design a Page-by-Page Iterator that uses a
background thread to prefetch data.

* Draw a sequence diagram of what method calls
are required to fetch some data from the P-b-P
Iterator.

5: Composite

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Composite

 [ntent

— Compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects
uniformly.

 |Intent according to Vlissides

— Assemble objects into tree structures. Composite
simplifies clients by letting them treat individual
objects and assemblies of objects uniformly.

+sehcVialiimsg. String) void

+add{contact.Contact):void
+remove(contact.Contact):void

A

¢
DistributionList
-contacts:List=new LinkedList(

+sendMail{msg:String):void

+Person{email:String)
+sendMailimsg:String):void +add{contact.Contact):void

+remove{contact.Contact):void

Sample Code: Contact

public abstract class Contact {
public void add(Contact contact) {}
public void remove (Contact contact) {}
public abstract void sendMail (String msg) ;

}

Sample Code: Person

public class Person extends Contact {
private final String email;
public Person(String email) ({
this.email = email;

}

public void sendMail (String msg) ({
System.out.println("To: " + email) ;
System.out.println("Msg: " + msqg);
System.out.println() ;

}

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Sample Code: DistributionL.ist

import java.util.*;
public class Distributionlist extends Contact ({
private List contacts = new LinkedList() ;
public void add(Contact contact) {
contacts.add (contact) ;

}

public void remove (Contact contact) ({
contacts.remove (contact) ;

}

public void sendMail (String msg) {
Iterator it = contacts.iterator () ;
while (it.hasNext()) {
((Contact)it.next()) .sendMail (msqg) ;

}

Sample Code: MailClient

public class MailClient ({
public static void main(String[] args) {
Contact tjsn = new DistributionlList() ;
tjsn.add (new Person("john@aol.com")) ;

Contact students = new DistributionList() ;
students.add (new Person("peter@intnet.mu")) ;
tjsn.add (students) ;
tjsn.add (new Person ("anton@bea.com")) ;
tjsn.sendMail (

"welcome to the 5th edition of ...");

> java MailClient

To: john(@aol.com
Msg: welcome to the

To: peter(@intnet.mu
Msg: welcome to the

To: anton@bea.com
Msg: welcome to the

5th edition of

5th edition of

5th edition of

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Applicability: Composite

« Use the Composite pattern when

— you want to represent part-whole hierarchies of
objects.

— you want clients to be able to ignore the difference
between compositions of objects and individual
objects.

+operation)) void
+add{child:Component):void

+removeichild:Component):void
+getChild(indexint):Component

¢
Leaf
+operation():void +operation():void

+add{child:Component):void

forall g in children +remove(child:Component):void
g.operation(); +getChild{indexint):Component

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Conseguences: Composite

 Benefits

— defines class hierarchies consisting of primitive
objects and composite objects

— makes the client simple

— makes it easier to add new kinds of components
 Drawbacks

— can make your design overly general

Known Uses: Composite

 java.awt.Component
* java.io.File

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Questions: Composite

- The Composite Pattern is one of the most
commonly used patterns in Object
Orientation. How would you go about
designing the Mailing List example without
this patterns, i.e. without having a common
superclass?

What maintenance issues would this cause?

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Exercises: Composite

 Add isLeaf():boolean and
children():lterator methods to Contact.
children() returns an Iterator of all children of
the current contact (not recursively). Leaves
would return a Nulllterator (which is a
Singleton).

* Write an external Contactlterator class that
returns all the leaves below a Contact.

« Map the Contact example to a relational
database.

6. Design Patterns Course

« Easiest way to learn Design Patterns is through
a course:

— http://www.javaspecialists.co.za
« 3 days of action packed learning fun

Design Patterns London

Design Patterns
Switzerland

De5|gn Patterri%m
Mauritius

2001, 2004, 2005,
20067

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

(@)
AN

My Dream

* Africa taking a technological lead
— e.g. Mark Shuttleworth
« Mauritius as cyber island with excellent
programmers
— Not just cheap, but good solid quality
— Able to compete with Eastern Europe

« Coming back to your beautiful island, year after
year ©

